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Coastal areas show strong spatial variations in MHWs

e frequency (Scannell et al.,2016)

¢ intensity and duration (Oliver et al.,, 2018)

e trend in # of extreme hot days (Lima and Wethey, 2012)
e physical forcing mechanisms (Holbrook et al., 2019)

® lack of understanding
of regional variations Linear trends in the yearly frequency of extreme hot days,

prevents accurate 1982-2010
prediction
(Jacox et al., 2019)

® California Current System:
productive fisheries
severely affected by MHWs




The spatial structure of a “split” SST anomaly in 2015 MHW
is very similar to a known wind stress pattern.

(@) SST anomaly, (C) wind stress anomaly,
July 14,2015 typical CCS wind relaxation
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* this phase of wind dipole caused by synoptic ridging (Nuss 2007)
* triangular shape from MBL hydraulics, coastline bend at Cape Mendocino (Edwards et al. 2002)



The typical wind fluctuations are associated with SST anomaly

trends.
wind stress anomaly (Pa)

composite over 69 cenCal summer relaxations
from QuikSCAT satellite L2 swaths

50

change in SST

during 44 summer wind relaxations
from OAFlux

Latitude (°N)

140 _ o 110 Kayla Flynn
Longitude (°W) UConn M.S.2016
BT @ 32— s

-0.15 0 0.15

Hypothesis: the SST pattern during extreme events (MHW)
is due to a more persistent version of “normal’” weather events.

Fewings et al. |GR 2016; Flynn, 2016; Flynn et al. JGR 2017



Using satellite SST, wind stress, and air-sea heat fluxes
to understand the split MHW of 2015

(@) SST anomaly, (b)  SST anomaly, (C) wind stress anomaly, (d) wind stress anomaly,
July 14,2015 typical CCS wind relaxation typical CCS wind relaxation July 1-14,2015
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GHRSST L4 MUR Flynn et al,, JGR 2017 Fewings et al.,JGR 2016 L2 scatterometer swaths

satellite SST satellite SST satellite wind stress satellite wind stress
GHRSST L4 MUR AMSR-E L2 QuIikSCAT L2 QuikSCAT L2
July 2015 44 events 67 events RapidSCAT L2
summer 2006-2009 summer 2000-2009 ASCAT-A L2

July 2000-2017, July 2015

These spatial patterns are very similar.
To diagnose what caused the split MHW, next calculate terms in the heat budget



The SST anomaly is NOT explalned by t
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* where the ocean warmed off California, the air-sea heat flux anomaly was small due to +clouds
* weak winds off California can explain the split MHWV (likely via changes in mixed layer depth and entrainment)
 “California wind relaxation” phase of wind dipole unusually persistent. Large-scale atmospheric ridging?

* similar to synoptic wind dipole events (Flynn et al. 2017)

Fewings and Brown, Frontiers in Marine Science 2019

ne air-sea heat flux anomaly

satellite air-sea
heat fluxes:
CERES, OAFlux,
SeaFlux

satellite ocean
vector wind stress:
QuikSCAT,
RapidSCAT,
ASCAT-A
L2
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* In summer over the CCS, - g
> half the wind velocity variance is coherent T e

and captured by one HEOF (NOAA weather buoys, QuikSCAT)

MARINE HEAT WAVES:

* The split MHW of July 2015 was created by
a persistent relaxation of the expansion fan winds off California (satellite ocean vector winds)

* Dipole SST anomaly added to pre-existing large-scale MHW (satellite SST, air-sea heat flux)

COASTLINE SHAPE:

* The offshore spatial structure of the wind relaxations (satellite wind speed)
is set by a hydraulic expansion fan from the coastline bend of CA (Edwards et al. 2002)

* Coastline shape and large-scale pressure pattern determines regional variations in MHW in the CCS

SO WHAT?
* The regional spatial variability of MHW in the CCS may be predictable... even if the timing is not.



Ongoing work (1):
Other split MHWs!?

a split MHW a split MHW with opposite wind dipole phase?
SST anomaly July 24,2018 SST anomaly August 10,2018
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From NASA’s State of the Ocean tool, http://podaac-tools.jpl.nasa.gov/soto

Gwen Larson, MS defense next week!



Ongoing work (2):
Similar wind-MHW relationship in Chile-Peru EBUS

1
eSantiago

Ciénc,epc.l'.on
 Lavapie

SST anomaly, wind stress anomaly,
Jan 16,2016 Jan 5-16,2016
|0 . - I | B
=3 0 3°C -0.15 0 0.15 Pa
(a) GHRSST L4 MUR (b) L2 scatterometer swaths

Kylene Cooley, MS defense 4 weeks ago!
Cooley et al., in prep



50N

. [ ] CANADI-\IK
Ongoing work (3):
Subsurface MHW structure | g

45
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New gridded sections, robust climatologies, and anomalies: ‘ .
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Risien et al., in prep. x2, Cervantes et al., in prep., Fewings et al., in prep.
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Wish lists

Observations:

(1) Higher resolution (space and time) global coverage ocean mixed layer depth
e.g. more Argo floats surfacing every 1-3 days not 10 days

(2) Higher-resolution, sub-daily, global coverage air-sea heat fluxes from satellites

(3) Higher-resolution satellite microwave SST (coverage near coast)

(4) Prevent gaps in in-situ time series

(5) How these new obs would play into management applications: improved near-surface conditions
in data assimilative models —> high-resolution, >1 yr Lagrangian back trajectories for fisheries
studies

Diversity and Inclusion:

(1) To have meaningful new engagement and partnerships, e.g. with indigenous communities,

need longer timelines (6 months) between announcement of RFP priorities/LOI results

and proposal deadlines

(2) More grad and postdoc fellowships targeted at underrepresented groups.
There’s lots of data available to be analyzed! We need people time funded to do the analysis.

(3) Change reward systems to value D&l work more highly.



